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Abstract— This brief explores the applicability of recent results
in game theory and cooperative control to the problem of
optimizing energy production in wind farms. One such result
is a model-free control strategy that is completely decentralized
and leads to efficient system behavior in virtually any distributed
system. We demonstrate that this learning rule can provably
maximize energy production in wind farms without explicitly
modeling the aerodynamic interaction amongst the turbines.

Index Terms— Cooperative systems, networked control
systems, wind farms.

I. INTRODUCTION

W IND energy is widely becoming recognized as one of
the most cost-efficient sources of renewable energy.

Accordingly, expectations for wind energy are at unprece-
dented levels. In the US, a goal has been set for wind
energy capacity to meet 20% of the country’s electrical energy
demands by 2030 [2]. One of the keys to realizing this goal
in a cost-efficient manner is to utilize existing wind farms in
a more efficient manner through improved control algorithms.

Most research on the control of wind turbines has focused
on the single-turbine setting [3], [4]. The control of an array of
turbines in a wind farm is more challenging than controlling
a single turbine because of the aerodynamic interactions
amongst the turbines, which render most of these single-
turbine control algorithms highly inefficient for optimizing
power capture in wind farms [5]–[7]. The potential for improv-
ing performance, both in terms of increasing power capture
as well as mitigating loads across the wind farm, has led
to new research efforts in coordinating the control of arrays
of wind turbines [8]–[14]. One approach for dealing with
these aerodynamic interactions is to develop wake models for
use in the distributed control algorithms [15]–[20]. However,
the variable and chaotic nature of wind makes such a task
incredibly challenging. An alternative approach, and the goal
of this brief, is to develop an online control algorithm where
each turbine adjusts its own axial induction factor in response
to local information, such as the individual turbine’s power
generation, local wind conditions, or minimal information
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regarding neighboring turbines. The axial induction factor is
a measure of the decrease in axial air velocity through the
turbine and is related to the power the wind turbine extracts
from the wind. Here, the goal is to develop a control algorithm
that permits the set of turbines to reach a desirable set of axial
induction factors that lead to good system level behavior, e.g.,
power maximization or load minimization, without the need
for explicitly modeling the wind.

In this brief, we investigate the applicability of recent results
in game theory and cooperative control for optimizing energy
production in wind farms [21]–[23]. The field of game theory
provides a framework for analyzing systems comprised of
enmeshed decision makers. In wind farms, the decision makers
represent the individual turbines, and the enmeshment follows
from the fact that the decision of one turbine impacts the wind
conditions and potential power generation by other turbines.
The game theoretic framework is broad enough to model
several phenomena that are relevant to wind farms including
multiple and heterogeneous decision makers (e.g., turbines
with variations in blade size), limited information in decision
making (e.g., each turbine has limited information regarding
the environment), environmental uncertainties (e.g., variability
in wind conditions), and more.

One of the fundamental challenges associated with devel-
oping control strategies for the individual turbines in a wind
farm is dealing with the following informational constraints.

1) Each turbine does not have access to the functional form
of the power generated by the wind farm. This is because
the aerodynamic interaction between the turbines is
poorly understood.

2) Each turbine may not have access to the choices of
other turbines. This is because of the lack of a suitable
communication system.

Accordingly, the applicability of some of the common
approaches to distributed optimization, e.g., subgradient meth-
ods [24], [25], are inapplicable because of these informational
constraints. Recent research focuses on the use of genetic
algorithms for wind farm optimization [26]. However, genetic
algorithms do not typically provide any guarantees on conver-
gence times or the quality of the solution.

The focus of this brief is on recent developments in game
theoretic control for multiagent systems on the problem of
wind farm optimization under the aforementioned informa-
tional constraints. We start by defining the wind farm model
in Section II and a tractable example in Section III. Next, in
Section IV we present two game theoretic distributed learning
algorithms that can be utilized in distributed controllers to
provide convergence to the collection of axial induction factors
that optimize the power production in a wind farm. Both
learning algorithms are model-free, which means that they do
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not require a characterization of the aerodynamic interaction
between the turbines to provide the desired convergence. The
difference between the two algorithms centers on the amount
of information available to the individual turbines. The first
distributed learning algorithm, termed safe experimentation
dynamics (SED) [27], requires each of the individual turbines
to have knowledge regarding the total power produced in
the wind farm. The second distributed learning algorithm,
termed payoff-based distributed learning for Pareto optimality
(PDLPO) [28], requires each of the individual turbines to
only have knowledge regarding the power produced by the
turbine itself and limited information regarding the behavior
of neighboring turbines.

Lastly, in Section V we present several illustrations. In
Section V-A, we focus on a simple three-turbine example and
demonstrate that the proposed algorithms lead to a 7% increase
in power produced by the wind farm when compared to the
locally optimal controllers. Here, locally optimal controllers
are the well-studied single-turbine controllers that seek to
achieve an axial induction factor of 1/3. In Section V-B,
we provide simulation results on a more complex 80-turbine
wind farm which replicates the layout of Horns Rev, an actual
commercial offshore wind farm that is located in the North
Sea off the coast of Denmark. Here, the proposed algorithms
lead to a 25% increase in power produced by the wind farm
when compared to the locally optimal controllers.

This brief presents an initial study into the applicability
of game theoretic methods for wind farm control. To make
the resulting analysis tractable, we consider fixed exogenous
wind conditions and steady-state conditions with regard to the
aerodynamic interaction between the turbines. Furthermore,
we also assume the existence of control strategies for the
individual wind turbines that can stabilize any axial induction
factor between 0 and 1/3.1 While these assumptions are
not necessarily realistic for actual wind farms, they serve
to demonstrate the potential of game theoretic methods for
multiturbine coordination for providing provable guarantees on
system performance. Furthermore, it is important to point out
that the presented algorithms were not altered for application
to wind farm control; hence, there is a significant opportunity
to improve upon the presented results by fine-tuning such
algorithms for the problem of wind farm optimization. Lastly,
it is worth noting that there are alternative game theoretic dis-
tributed learning algorithms that can accommodate relaxations
in these assumptions while still providing provable guarantees
on the system performance [27], [30], e.g., provide provable
guarantees under varying wind conditions.

II. WIND FARM MODEL

We consider a wind farm consisting of n wind turbines
denoted by the set N = {1, 2, . . . , n}. For simplicity in initially
developing and exploring our approach, we assume uniform
wind of constant speed U∞ and constant direction. Further-
more, we assume throughout that all wind turbines are oriented

1Empirical evidence on actual wind turbines suggests that it is possible to
achieve axial induction factors different from 1/3; however, to our knowledge
there is only one initial study into the stability of such schemes [29].
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Fig. 1. Parameters for single-turbine wake model.

so that the turbine axes are parallel to the wind direction.
Each turbine i ∈ N is characterized by the diameter Di of
the disk generated by the turbine blades and a 2-D location
(xi , ri ) relative to a common vertex, where xi is the distance
from this vertex in the wind direction and ri is the distance
from this vertex in the orthogonal direction. We represent joint
axial induction factors by the tuple a = (a1, a2, . . . , an) where
ai denotes the axial induction factor of turbine i . The set of
admissible axial induction factors for turbine i is given by the
set Ai = {ai : 0 ≤ ai ≤ 0.5}, and A = A1 ×· · ·×An is the set
of admissible joint axial induction factors. We will frequently
express a joint axial induction factor a ∈ A by a = (ai , a−i ),
where a−i = (a1, a2, . . . , ai−1, ai+1, . . . , an) represents the
collection of axial induction factors of all wind turbines other
than turbine i .

A. Wake Model

A wake model seeks to characterize the wake resulting from
a single turbine. The well-studied Park model is one of the
most prevalent wake models studied in the existing literature
[26], [31]–[34]. Consider the situation highlighted in Fig. 1,
where turbine i ∈ N is the only turbine and let Vi (x, r; ai)
represent the velocity profile of the wake generated by turbine
i relative to the vertex (xi = 0, ri = 0). According to the Park
model, the velocity profile takes the form

Vi (x, r; ai) = U∞ (1 − δVi (x, r; ai)) (1)

where δVi (x, r; ai) represents the fractional deficit of the
velocity at the point (x, r) downstream of turbine i

δVi (x, r; ai) =
{

2ai

(
Di

Di+2kx

)2
, for any r ≤ Di+2kx

2

0, for any r > Di+2kx
2

(2)

where k is a roughness coefficient.2 The two dominant traits
of this model are: 1) the velocity profile is constant along
the radial direction of a wake, i.e., Vi (x, r; ai) = Vi (x, r ′; ai)
for all r, r ′ ≤ (Di + 2kx)/2 and 2) the velocity approaches
U∞ at large distances from the turbine. According to (2), the
diameter of the wake of turbine i at a distance x downstream
is given by Dw

i (x) = Di + 2kx .

2The roughness coefficient defines the slope at which the wake expands
out from the turbine. Roughness coefficients have been found empirically for
many different environments, e.g., k = 0.075 for farmlands and k = 0.04 for
offshore locations [32].
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Fig. 2. Two-turbine example depicted above where the wind seen at
turbine 2 is nonuniform. Using (4), the aggregate velocity deficit at turbine 2
is δV2(a) = 2a1 (D1/D1 + 2k(x2 − x1))2

(
Aoverlap

1→2 /A2

)
. Note that, if the

wake of turbine 1 completely encompasses turbine 2, i.e., A
overlap
1→2 = A2,

then we recover (2) as expected.

B. Wake Interaction Model

A core modeling challenge associated with the multiturbine
setting is characterizing how overlapping wakes interact with
one another. A common approach in the existing literature
is that of momentum balance [31]. Rather than deriving an
entire velocity profile, we use an aggregate wind velocity
seen by each turbine i ∈ N , which we will represent by
V1(a), . . . , Vn(a), respectively. For any wind turbine i ∈ N ,
the aggregate wind velocity is given by

Vi (a) = U∞(1 − δVi (a)) (3)

where the aggregate velocity deficit seen by turbine i is

δVi (a)=2

√√√√√ ∑
j∈N :x j<xi

⎛
⎝a j

(
D j

D j + 2k(xi − x j )

)2 Aoverlap
j→i

Ai

⎞
⎠

2

(4)
where Ai is the area of the disk generated by the blades of
turbine i and Aoverlap

j→i is the area of the overlap between the
wake generated by turbine j and the disk generated by the
blades of turbine i . See Fig. 2 for an illustration with two
turbines. Accordingly, (3) takes the form

Vi (a) = U∞

⎛
⎝1 − 2

√ ∑
j∈N :x j <xi

(
a j c j i

)2

⎞
⎠ (5)

where

c j i =
(

D j

D j + 2k(xi − x j )

)2 Aoverlap
j→i

Ai
. (6)

C. Power Model

We represent the control parameters of a wind turbine by the
turbine’s axial induction factor which represents the fractional
decrease in wind velocity between the free stream conditions
and those seen at the rotor plane. We parameterize our wind
model by the axial induction factors as opposed to more
traditional control parameters, e.g., tip-speed ratio and pitch
angle, to provide a more compact representation of the wind
farm model studied in this brief. More specifically, the power
generated by turbine i is characterized by [35], [36]

Pi (a) = 1

2
ρ Ai CP(ai )Vi (a)3 (7)

where ρ is the density of air and CP (ai) is the power efficiency
coefficient which takes on the form

CP (ai ) = 4ai (1 − ai )
2. (8)

The total power generated in the wind farm is simply

P(a) =
∑
i∈N

Pi (a).

III. MOTIVATING EXAMPLE

This brief focuses on developing wind turbine control
strategies for maximizing power capture in a wind farm.3 More
specifically, we focus on the attainment of the optimal joint
axial induction factor

aopt ∈ arg max
a∈A

P(a).

It is important to note that most existing control strategies for
wind turbines are geared at stabilizing an axial induction factor
of 1/3. The reason for this stems from (7) and (8), where we
know that for any a−i ∈ A−i = ∏

j �=i A j we have

1/3 = arg max
ai∈Ai

Pi (ai , a−i ) .

We refer to this locally optimal control strategy as greedy,
and we let agreedy = {1/3, . . . , 1/3}. Does this greedy control
policy efficiently extend to the wind farm setting? More
formally, how does the power production associated with
agreedy compare with the power production associated with
aopt?

To shed light on this question, we focus on the three-turbine
wind farm illustrated in Fig. 3. In this setting, the power
produced by the wind farm, P(a), takes on the form

1

2
ρ A

(
Cp(a1)U

3∞ + Cp(a2)V2(a)3 + Cp(a3)V3(a)3
)

(9)

where U∞ is the upwind velocity and A = A1 = A2 = A3.
Solving for V2(a) and V3(a) using (5), we obtain

V2(a) = U∞(1 − 2a1c12) (10)

V3(a) = U∞
(

1 − 2
√

(a1c13)2 + (a2c23)2
)

. (11)

Numerically optimizing (9) over the set of admissible joint
axial induction factors A gives us

{aopt
1 , aopt

2 , aopt
3 } = {0.232, 0.208, 0.333}. (12)

It is straightforward to verify that aopt
3 = 1/3, as there are

no further turbines downstream. For this simple setting, we
can attain aopt

1 and aopt
2 through an exhaustive search over the

set A1 × A2; however, it is important to note that such an
approach is not tractable in general.4 The efficiency of the
locally optimal axial induction factors is

P(agreedy)

P(aopt)
= 0.9265 (13)

3It is important to note that there are alternative objectives in wind farm
control, e.g., mitigating loads [35]. While we will not explicitly formulate
such objectives, the control techniques developed in this brief are applicable
for these settings as well.

4Note that for the optimal joint axial induction factor, the first turbine’s axial
induction factor is higher than the second turbine’s axial induction factor. This
phenomenon is consistent with observations made in other work on wind farm
optimization, e.g., [26].
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Fig. 3. Simple three-turbine wind farm considered in Section III. We denote
the turbine on the left as turbine 1, the turbine in the middle as turbine 2, and
the turbine on the right as turbine 3. Each turbine has a diameter of 80 m,
and the turbines are spaced 400 m apart from one another. The roughness
coefficient is k = 0.075. The wind is in the direction of the positive x-axis
with a fixed upwind velocity U∞. Note that according to (5), (7), and (8), the
wind velocity U∞ does not factor into the optimal profile of axial induction
factors.

meaning that the efficiency loss is greater than 7%. The reason
for this degradation is that the locally optimal axial induc-
tion factors do not account for the aerodynamic interactions
between the turbines.

IV. WIND FARM CONTROL

The previous section showed that control algorithms for
wind turbines in the single-turbine setting do not efficiently
extend to the multiturbine setting. This section explores
approaches for developing control algorithms for this multi-
turbine setting, where the objective is to maximize the total
power production in a wind farm given fixed exogenous
wind conditions. The challenge with such an objective is
dealing with the facts that: 1) the aerodynamic interaction
between the turbines is not well characterized and 2) the
information available to each of the wind turbines may be
limited. Nonetheless, we will show that these limitations can
be overcome to meet our desired objectives.

A. Preliminaries: Cooperative Control

In this section, we formulate the problem of wind farm
optimization as a cooperative control problem. The forthcom-
ing control designs establish an interaction framework that
produces a sequence of joint axial induction factors a(0),
a(1), . . . , where at each iteration t ∈ {0, 1, 2, . . .} the decision
of each turbine i ∈ N is chosen independently according to a
local control law of the form

ai(t) = �i (Information available to turbine i at iteration t).
(14)

The control policy of turbine i , �i (·), designates how
each turbine processes available information to formulate
a decision at each iteration. We will refer to a turbine’s
axial induction factor as the turbine’s action or decision.
The goal is to design the local control policies {�i (·)}i∈N

within the desired informational constraints such that the
collective behavior converges to a collection of axial induc-
tion factors aopt that optimizes the total power production
in the wind farm, i.e., aopt ∈ arg maxa∈A P(a). Here,
we focus on the design of turbine control policies that
are model-free, i.e., control policies that do not rely on
characterization of the aerodynamic interaction between the
turbines.

B. Model-Free With Communication

For the full communication setting, we focus on the
design of local turbine control policies in (14) of the
form

ai (t) = �i
({ai (τ ), P (a(τ ))}τ=0,1,...,t−1

)
. (15)

Accordingly, the decision of turbine i at any iteration t > 0 is
able to depend on: 1) the axial induction factor of turbine i at
any previous iteration τ ≤ t −1 and 2) the power produced by
the wind farm at any previous iteration τ ≤ t − 1. Note that
turbine i does not have access to the axial induction factors
of the other turbines at any iteration τ ≤ t − 1, i.e., a−i (τ ),
or the structural form of P(·).

We will now introduce SED presented in [27]. SED requires
that the set of axial induction factors for each turbine be
a discretized set. In SED, each turbine i ∈ N possesses
a local state variable that impacts on the turbine’s control
policy. We represent a turbine’s state by the tuple [āi , p̄i ],
where:

1) the benchmark action is āi ∈ Ai and
2) the benchmark power is p̄i , which is in the range

of P(·).
SED proceeds as follows.

1) Initialization: At iteration t = 0, each turbine i ∈ N
randomly selects an axial induction factor ai (0) ∈ Ai .
This will be initially set as the turbine’s baseline action
at iteration t = 1 and is denoted by āi(1) = ai (0). The
turbine’s baseline power at iteration t = 1 is given by
p̄i(1) = P(a(0)).

2) Action Selection: At each subsequent iteration, each
turbine selects the baseline action with probability
(1 − ε) or experiments with a new random action with
probability ε

ai(t) =
{

āi (t) with probability (1 − ε),
RAND with probability ε

(16)

where ε > 0 will be referred to as the turbine’s explo-
ration rate and RAND represents that ai(t) is chosen
randomly according to a uniform distribution over the
set Ai .5

3) State Update: Each turbine i ∈ N updates the baseline
action according to

āi(t + 1) =
{

ai (t), P(a(t)) > p̄i (t)

āi (t), P(a(t)) ≤ p̄i (t)

5In general, uniformity is not necessary to provide the asymptotic guarantees
given in Theorem 1 [27].
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and the baseline power according to

p̄i (t + 1) = max {P(a(t)), p̄i (t)} .

This step is performed whether or not Step 2) is involved
in experimentation.

4) Return to Step 2) and repeat.
This learning algorithm is called SED since P(ā(t))

is nondecreasing with respect to the iterations, i.e., the
power generated by the wind farm when using the base-
line action is nondecreasing. We now state the following
characterization on the limiting behavior associated with the
SED [27].

Theorem 1: Suppose all turbines use SED as highlighted
above. Given any probability p < 1, if the exploration rate
ε > 0 is sufficiently small, then for all sufficiently large iter-
ations t , a(t) ∈ arg maxa∈A P(a) with at least probability p.

There are several important properties regarding the applica-
bility of Theorem 1 to wind farm optimization. First,
Theorem 1 guarantees that the average power produced in
the wind farm converges to the optimal power that could be
produced given the current wind conditions

lim
ε→0+ lim

t→∞

(
1

t

t−1∑
τ=0

P(a(τ ))

)
= max

a∈A
P(a). (17)

Second, note that there is no underlying dependence on a
given wind model and wake interaction model. Accordingly,
the above characterization holds for any setting which is
of fundamental importance since developing accurate wind
models, and wake interaction models is an active research
area [8]–[12], [14]. Third, it is important to highlight that
the characterization provided in Theorem 1 refers to proba-
bilistic convergence as opposed to almost sure convergence.
This means that the joint axial induction factors will not
converge to the optimal axial induction factors. Rather, the
individual wind turbines will spend most of the time using
the optimal axial induction factors. The reason for this is
that the individual turbines do not have access to the struc-
tural form of P(a). Therefore, the turbines perpetually probe
the system, albeit with small probability, to gain informa-
tion. Lastly, there are extensions of the presented algorithm
for scenarios with nondeterministic power production func-
tions P(·) [27]. This nondeterministic case may yield bet-
ter performance in wind farm settings with nonstatic wind
conditions.

C. Model-Free With Limited Communication

For the limited communication setting, we focus on the
design of local turbine control policies in (14) of the form

ai (t) = �i

({{
a j (τ )

}
j∈Ni

, Pi (a(τ ))
}

τ=0,1,...,t−1

)
(18)

where Ni ⊆ N is the neighbor set of turbine i . We assume
throughout that i ∈ Ni for all turbines i ∈ N . Accordingly, the
decision of turbine i at any iteration t > 0 is able to depend
on: 1) the axial induction factor of any turbine j ∈ Ni at any
previous iteration τ ≤ t − 1 and 2) the power produced by
turbine i at any previous iteration τ ≤ t − 1. In this setting,

turbine i no longer has access to information pertaining to the
power produced by all other turbines at any iteration τ ≤ t−1,
i.e., {Pj (a(τ ))} j �=i , and thus the aforementioned SED are no
longer admissible.

We now present the algorithm PDLPO introduced in [28].
As with the SED, each turbine i ∈ N possesses a local state
variable which impacts the turbine’s control policy. Now, at
each point in time a turbine’s state is represented by the triple
[	ai , p̄i , mi ] defined as follows.

1) The benchmark action vector is 	ai ∈ ∏
j∈Ni

A j .
2) The benchmark power is p̄i , which is in the range of

Pi (·).
3) The mood is mi , which can take on two values, content

(C) and discontent (D).

The learning algorithm produces a sequence of action profiles
a(1), . . . , a(t), where the behavior of turbine i at each iter-
ation t = 1, 2, . . . , is conditioned on turbine i ’s underlying
benchmark power p̄i (t), benchmark action āi(t), and mood
mi (t) ∈ {C, D}.

We divide the dynamics into two parts: the turbine dynamics
and the state dynamics. To simplify the forthcoming presenta-
tion, we will present the algorithm under the assumption that
1 > Pi (a) ≥ 0 for all a ∈ A.

Turbine Dynamics: Fix an experimentation rate ε > 0 and
constant c ≥ n.6 Let x̄i (t) = [	ai , p̄i , mi ] be the current state
of turbine i at iteration t .

1) Content (mi = C): In this state, the turbine chooses an
axial induction factor at iteration t , ai (t), according to
the following probability distribution:

Pr [ai(t) = ai |x̄i(t)] =
{

εc

|Ai |−1 , for ai �= 	ai
i ,

1 − εc, for ai = 	ai
i

(19)

where |Ai | represents the cardinality of the set Ai , and
	ai

i represents the action of turbine i in the vector 	ai .

2) Discontent (mi = D): In this state, turbine i chooses
an action ai according to the following probability
distribution

Pr [ai (t) = ai |x̄i (t)] = 1

|Ai | for every ai ∈ Ai . (20)

Note that the benchmark action and benchmark power
production levels play no role in the turbine dynamics
when the turbine is discontent.

State Dynamics: Let aNi = {a j (t): j ∈ Ni } represent
the actions of the neighbors of turbine i at time t , and
pi = Pi (a(t)) represent the power produced by turbine i given
the profile a(t). The state is updated as follows.

1) Content (mi = C): If [aNi , pi ] = [	ai , p̄i ], where the
equality means that the two expressions are equivalent
component by component, the new state is determined
by the transition

[āi , p̄i , C]

[
aNi ,pi

]
−→ [āi , p̄i , C]. (21)

6The forthcoming result only requires c ≥ maxa∈A
(∑

i∈N Pi (a)
)
.
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If [aNi , pi ] �= [	ai , p̄i ], the new state is determined by
the transition

[āi , p̄i , C]

[
aNi ,pi

]
−→

{
[ai , pi , C] with prob ε1−pi

[ai , pi , D] with prob 1 − ε1−pi .

2) Discontent (mi = D): If the selected action and power
produced are [ai , pi ], the new state is determined by the
transition

[āi , p̄i , D]

[
aNi ,pi

]
−→

{
[ai , pi , C] with prob ε1−pi

[ai , pi , D] with prob 1 − ε1−pi .

We now state the following characterization on the limiting
behavior associated with the algorithm PDLPO as provided
in [28]. Before stating the theorem, we introduce the following
assumption on the neighbor sets.

Assumption 1 (Interdependence of Neighbor Sets): The
neighbor sets {Ni }i∈N are interdependent if the graph with
nodes N and edges {i, j ∈ N : j ∈ Ni } is connected.

Theorem 2: Suppose all turbines use the PDLPO as high-
lighted above and that the neighbor sets satisfy Assumption 1.
Given any probability p < 1, if the exploration rate ε > 0
is sufficiently small, then for all sufficiently large times t ,
a(t) ∈ arg maxa∈A P(a) with at least probability p.

There are several important properties regarding the applica-
bility of Theorem 2 to the problem of wind farm optimization.
As with the SED, we attain probabilistic convergence as
opposed to almost sure convergence. However, we do so using
control policies that rely only on local information since in
this setting no turbine has access to the power generated by
the wind farm. Accordingly, both the presented algorithms
optimize total power production without requiring knowledge
of the aerodynamic interactions between the turbines. The
distinction between the two algorithms is the communication.
In the SED, each turbine has access to information regarding
the power generated by all turbines in the wind farm. This
is in contrast to PDLPO, where each turbine only has access
to information regarding the power generated by the turbine
itself and the behavior of neighboring turbines.7

V. SIMULATION RESULTS

We now present several illustrations of the distributed
control algorithm presented in the previous section on the
problem of wind farm optimization. We first focus on the
simple three-turbine row farm example from Section III and
will then proceed to a more involved 80-turbine wind farm
example which replicates the layout of Horns Rev.

A. Three-Turbine Example

Recall the three-turbine wind farm illustrated in Fig. 3.
As shown previously in (13), the efficiency loss associated

7It is important to note that the presented algorithm differs slightly from
the presentation in [28]. The key differences between the two algorithms is
that in [28] we have Ni = {i} for all turbines i ∈ N . However, the turbines’
power functions must satisfy some notion of interdependence. Whether this
interdependence condition is satisfied or not in wind farms remains an
open question and warrants further studies. However, by defining connected
neighbor sets satisfying Assumption 1, this interdependence condition is
immediately satisfied, irrespective of the structure of the turbines’ power
functions, and the proof set forth in [28] follows immediately.

with the locally optimal controllers was over 7% when com-
pared with the globally optimal controllers. While this 7%
was evaluated focusing on a specific wind model and wake
interaction model, i.e., Park model with momentum balance,
it seems realistic that alternative models, in addition to reality,
would see similar deficiencies. Ultimately, it is imperative that
the underlying control strategy accounts for the aerodynamic
interaction between the turbines.

1) Full Communication: We simulated the SED learning
algorithm on this three-turbine wind farm example. The
model parameters are k = 0.075, ρ = 1.225 (kg/m3), and
U∞ = 8 (m/s). The results are presented in Fig. 4(a) and (b)
for the exploration rate parameter ε = 0.05, discretized
action sets of the form Ai = [0.1: 0.01: 0.33], and an initial
profile of axial induction factors a(0) = {0.33, 0.33, 0.33}.
The simulation results demonstrate that the power produced
by the wind farm rapidly approaches the optimal power that
could be produced by the wind farm for the given wind
conditions. Furthermore, the axial induction factors quickly
approach the optimal axial induction factors identified in (12).
It is important to emphasize that this algorithm was effectively
able to optimize system performance without exploiting any
information regarding the underlying wind model or wake
interaction model.

2) Limited Communication: In the full communication
setting above, each wind turbine i ∈ N has informa-
tion regarding the power produced by the wind farm, i.e.,
P(a) = ∑

i∈N Pi (a) for any joint axial induction factor
a ∈ A. We now focus on the PDLPO learning algorithm,
which does not require such informational demands. Recall
that the algorithm requires that the turbine power levels satisfy
1 > Pi (a) ≥ 0 for all a ∈ A. To achieve this, we define a
normalized power for each turbine

PNORM
i (a) = 0.915

z

(
Pi (a) − min

a∈A
Pi (a)

)
(22)

where

z = max
i∈N,a,a′∈A

Pi (a) − Pi (a
′).

Note that this scaling ensures that the normalized power
functions satisfy 1 > PNORM

i (a) ≥ 0 for any a ∈ A.
Furthermore, the proposed normalizing does not change the
optimal axial inductions factors

arg max
a∈A

∑
i∈N

PNORM
i (a) = arg max

a∈A

∑
i∈N

Pi (a).

Fig. 4(c) shows the evolution of the power produced by
the wind farm using the PDLPO learning algorithm. The
model parameters are k = 0.075, ρ = 1.225 (kg/m3),
and U∞ = 8 (m/s). The algorithm parameters were set as
c = 2.2 and ε = 0.001, the neighbor sets were set as
N1 = {1, 2}, N2 = {1, 2, 3}, and N3 = {2, 3}, the action sets
were discretized as Ai = {0.2, 0.32}, the initial profile of axial
induction factors was a(0) = {0.2, 0.2, 0.2}, and each turbine
was initially in the discontent state. Here, the greedy policy
was chosen as (0.32, 0.32, 0.32) while the optimal policy
was selected over the discretized set A and was of the form
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Fig. 4. Simulation results on the three-turbine wind farm. (a) Evolution of axial induction factors and (b) evolution of normalized power provide simulation
results of the full information (FI) SED algorithm. The simulation results demonstrate that the SED learning algorithm can optimize the power produced in
the wind farm without an explicit model of the aerodynamic interaction between the turbines. (c) Evolution of normalized power provides simulation results
for the limited-information (LI) PDLPO algorithm. The performance is not as good as the performance associated with the SED learning algorithm, which is
to be expected as this learning algorithm places additional restrictions on the amount of information available to the individual turbines.
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Fig. 5. Simulation results on an 80-turbine wind farm that replicating the Horns Rev wind farm located in the North Sea off the coast of Denmark [37] which
is composed of Vestas V80 2-MW turbines, each with a diameter of 80 m. (a) Layout of the wind farm which is in an oblique rectangle with a turbine spacing
of 7 turbine diameters, i.e., 560 m, in both the x- and y-directions. The positive x-direction represents due east, and the positive y-direction represents due
north. (b) and (c) Simulation results of the SED. (b) Case when all turbines are operational. Here, the greedy policy produces around 74.6% of the potential
wind power production. When using SED, after 1000 iterations, the average power produced is over 95% of the potential wind power. (c) Case when the
circled turbines in (a) are not operational. Since 5 turbines are not operational, the optimal power production from the remaining 75 turbines is approximately
96.8% of optimal power production when all turbines are operational. When using SED, the average power produced by this wind farm quickly approaches
the optimal power production possible. Note that while the system perpetually experiments, as expected, the average performance is not impacted by these
experimentations. Here, we assumed that the failures were present at the start of the algorithm.

aopt = (0.2, 0.2, 0.32). While the simulation results demon-
strate that the power produced by the wind farm approaches
the optimal power, the time required to reach this configuration
is far greater than that required by the SED learning algorithm.
This is to be expected as the payoff-based learning algorithm
placed additional restrictions on the amount of information
available to the individual turbines.8

B. Horns Rev Example

This section presents a study on a more complex wind farm
which replicates the 80-turbine Horns Rev wind farm in Den-
mark. The wind farm configuration is illustrated in Fig. 5(a).
We simulated the SED learning algorithm on this 80-turbine
wind farm when all turbines are operational and also when
there are turbine failures. The model parameters were set as

8It is important to highlight that Fig. 4(c) is not necessarily indicative of true
steady-state behavior with regard to the proposed dynamics. Rather, this figure
provides an illustration of a specific run of the dynamics. This illustration
highlights that the turbines initially start in a fully discontent state and then
eventually settle on the optimal action profile. It is important to highlight
that the turbines will eventually become discontent again and the process will
repeat. The characterization in Theorem 2 provides the desired results when
ε → 0. However, as ε → 0, the time required to reach steady state converges
to ∞ which is obviously not desirable from a system-level perspective.

k = 0.04, ρ = 1.225 (kg/m3), and U∞ = 8 (m/s) in the
eastward direction. Here, we used k = 0.04 to model offshore
conditions. The exploration rate parameter is set as ε = 0.03,
with discretized action sets of the form Ai = [0:0.01:0.33],
and initial axial induction factors of ai (0) = 0.33 for each
turbine i ∈ N . Fig. 5(b) and 5(c) present simulation results
which demonstrate that the power produced by the wind farm
quickly approaches the optimal power that could be produced
by the wind farm for the given conditions. Fig. 5(b) focuses
on the setting when all turbines are operational. Here, the
degradation in performance associated with the greedy control
policy when compared to the optimal control policy is over
25%. Fig. 5(c) focuses on the setting when the circled turbines
in Fig. 5(a) are not operational. These results demonstrate
that the proposed control algorithms are robust to operational
failures.

VI. CONCLUSION

This brief initiated a study on optimizing power production
in wind farms using model-free algorithms. By model-free,
we mean an algorithm that does not utilize a model of the
aerodynamic interaction between the turbines. We presented
two model-free distributed learning algorithms from the game
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theoretic literature which could be employed to provably
optimize power production in wind farms. We simulated both
learning algorithms on two simplistic wind farm examples
and observed efficiency gains in upwards of 25% when com-
pared to the greedy algorithm. Nonetheless, it is important
to highlight that the asymptotic guarantees associated with
the presented algorithms placed strong assumptions on the
wind farm conditions which are unrealistic. These include
controlling the axial induction factor, invariant wind condi-
tions, and a focus on purely steady-state behavior. It is imper-
ative to understand how the presented algorithms, or variants
thereof, extend to more realistic wind farm conditions. Such
assessments can initially be conducted by simulations on more
realistic wind farm models, e.g., [38]. A second opportunity for
research is to identify the importance of aerodynamic models
for wind farm optimization. While the presented algorithms
did not require such models, this limitation ultimately ham-
pered their performance. Accordingly, a key area of future
research is assessing what level of model precision is neces-
sary to see significant improvements in the behavior of such
algorithms.
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