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Plan for today

1 Bargaining applications
2 Cooperative bargaining solution
3 Noncooperative bargaining program
4 Experimental bargaining
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Lecture logic

Topic

Introduce bargaining
Illustrations/ applications
Bridge cooperative and noncooperative game theory (again...)

Appeal

Bargaining is ubiquitous
May be useful in real life
Illustrates the idea of the “Nash program”
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Examples of bargaining

Markets:

Individuals (buyer/seller)
Strategies (bid/ask certain prices)
Outcome (profits/losses)

jcrs.com

Splitting:

Players (partners)
Strategies (demands)
Outcome (a split)

mirror.co.uk
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Bargaining in real-world markets

Bombay Stock Exchange

Stock market:

Individuals (buyer/seller)
Strategies (bid/ask certain prices)
Outcome (profits/losses)

L’Inde Fantome
(L. Malle 1969)
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Bargaining over what?

Buyers/sellers and their willingness to pay/accept

Buyer i ∈ B and seller j ∈ S look for partners
(|B| = |S| = N) – each seller owns exactly one
good and each buyer wants exactly one good

Buyer i is willing to pay at most r+i (j)∈ δN
for the product of seller j

Seller j is willing to accept at least r−j (i)∈ δN
to sell his product to buyer i

where δ> 0 is the minimum unit (‘dollars’)
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Bargaining over the match value

The match value for the pair (i, j) is

αij = (r+i (j)− r−j (i))+

Let α = (αij)i∈F,j∈W

Normalization.
Let’s normalize this value to the ‘unit-pie’ αij = 1
for some (i, j).
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Is there any economic activity more basic than two people dividing a pie?

The pie could symbolize the gains from trade in a market, the surplus generated
within a firm, or the benefit from writing a joint paper on economics. Supposing that
the nature of the split does not affect the pie’s total size, this is a case in which
distribution and efficiency is thought not to conflict. Surely, sensible people will come
to some agreement rather than backing away from the transaction empty-handed. This
argument has permeated economic thinking at least since Edgeworth [1881], and is
sometimes referred to as neoclassical bargaining theory (see, e.g., Harsanyi [1987]).

from T. Ellingsen (1997): The Evolution of Bargaining Behavior.
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The basic bargaining model

Ingredients:
Multiple parties/players
A common gain/pie
No central authority
Bargaining ensues
Some outcome is reached

From the analyst’s point of view, how do we model this as a “game”?
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Two approaches

Cooperative:
Multiple parties/players
Coalitions form/contract is written
Normative axioms are established
Outcome is identified
Outcome is implemented

Noncooperative:
Multiple parties/players
Bargaining follows some rules
Players act strategically
Bargaining takes place
Outcome is implemented
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Examples

Cooperative:
Twins share presents
They have identical preferences
Twins agree on a splitting rule
Sharing fifty-fifty is the only
fair rule accepted by both
Presents are divided in equal
halves
Outcome is implemented

Noncooperative:
A buyer and a seller meet on the market
They have different preferences
Buyers make offers
Sellers make counteroffers
Both try to get the most out of the deal
If an offer is accepted, they deal
If not, no deal
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Compare with our ‘cooperative solutions’ (Lecture 2)

Shapley value:
All players could agree on
the axioms
They could write an
agreement that the SV is
implemented
Then the outcome would be
implemented

Core:
When the SV lies inside the core, this seems
stable
However, as the SV may lie outside the core
Or when the core is empty
Then there would exist coalitions that
perhaps would break the deal
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The first formal model (Nash again!)

2-person cooperative bargaining

Nash (1953): Two-Person Cooperative Games. Econometrica 21.

Aside: there were earlier versions due to Edgeworth 1881, Zeuthen 1930 and von
Neumann and Morgenstern 1944.
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2-person cooperative bargaining

Two person sharing the unit-pie

Basic ingredients:
players N = {1, 2}
outside options
v(i) = oi ∈ [0, 1) for both
i ∈ N
agreement value v(N) = 1

The aim:
The goal is to reach an
agreement (s1, s2) such that
s1 + s2 = 1 – Pareto
efficient
si ≥ oi for all i –
Individually rational
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Nash bargaining 1

Individual preferences and normative postulates:

Agents have different preferences ui(c) s.t.
∂ui(c)/∂c > 0 and
∂2(ui(c))/∂c2 < 0
The outcome that is reached should be “fair”!
But what is fair?

If everything (including preferences and outside options) is identical, ...
easy...
50 : 50 is fair.
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Nash bargaining 2

In general, there may be conflict between what is “fair” and what will be reached by
strategic bargaining.

Nash program
Derive a framework for noncooperative bargaining, at the end of which the outcome is
a Nash equilibrium (i.e. such that everyone’s choice is optimal given the choices of
others), and that outcome implements a cooperative solution concept.

16 / 52



Illustrating the Nash program

• Bargaining sets obtained from a bimatrix game

• Bargaining axioms

• The Nash bargaining solution

• Geometric characterization of the Nash bargaining solution

• Splitting a unit pie, concave utility functions

• The ultimatum game

• Alternating offers over several rounds

• Stationary strategies

• The Nash bargaining solution via alternating offers
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Toward a cooperative bargaining solution: “The Nash Bargaining Solution”

JF Nash (1950). ‘The Bargaining Problem’. Econometrica 18(2) : 155− 162.
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Bargaining set from a bimatrix game
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Axioms for Bargaining Set S ⊂ R2

• Threat point (u0, v0) ∈ S,

for all (u, v) ∈ S: u ≥ u0, v ≥ v0.

• S is compact (bounded and closed)

• S is convex (via agreed joint lotteries)
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Axioms for Nash Bargaining Solution N(S)

• N(S) = (U,V) ∈ S.

• Pareto-optimality: for all (u, v) ∈ S:

u ≥ U and v ≥ V ⇒ (u, v) = (U,V)

• Invariance of utility scaling: a, c > 0,

S′ = {(au + b, cv + d) | (u, v) ∈ S} ⇒ N(S′) = (aU + b, cV + d).

• Symmetry: if S is symmetric, then so is N(S):

If (u, v) ∈ S implies (v, u) ∈ S, then U = V.

• Irrelevance of unused alternatives: If S, T are bargaining sets with the same
threat point and S ⊂ T, then N(T) 6∈ S or N(T) = N(S).
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Irrelevance of unused alternatives
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The Nash bargaining solution [Nash 1950]
Under the Nash bargaining axioms, every bargaining set S containing a point (u, v)
with u > u0 and v > v0 has a unique solution N(S) = (U,V).

(U,V) maximises the following product–
Nash product: (U − u0)(V − v0) for (U,V) ∈ S.

uv = const
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Nash bargaining solution - proof

• Shift threat point (u0, v0) to (0, 0):

replace S with S′ = {(u− u0, v− v0) | (u, v) ∈ S}
⇒Nash product maximised as UV (rather than (U − u0)(V − v0))

• re-scale utilities so that (U,V) = (1, 1):

replace S with S′ = {(u/U, v/V) | (u, v) ∈ S}.

• consider T = {(u, v) | u ≥ 0, v ≥ 0, u + v ≤ 2}
N(T) = (1, 1), because T is a symmetric set, and (1, 1) is the only symmetric
point on the Pareto-frontier of T.

• Claim: S ⊆ T ⇒ (by independence of irrelevant alternatives) N(S) = N(T)
because (1, 1) ∈ S.
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Proof that S ⊆ T

25 / 52



Proof that S ⊆ T
Suppose exists (u, v) ∈ S, (u, v) 6∈ T ⇒ u + v > 2.

Idea: even if Nash product u v ≤ 1 = UV, still uv > 1 for

(u, v) = (1− ε)(1, 1) + ε(u, v), contracting maximality of UV,

where (u, v) ∈ S by convexity of S.

uv = 1

v

20
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1

1

2

(u, v)

(u, v)T

S

(1,1)

Indeed uv > 1 for sufficiently small ε because

uv = (1− ε+ εu)(1− ε+ εv)

= (1 + ε(u− 1))(1 + ε(v− 1))

= 1 + ε( u + v− 2 + ε(u− 1)(v− 1))

> 1 for sufficiently small ε > 0 because u + v− 2 > 0
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Geometric characterization of U,V
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Splitting a unit pie

Suppose player I and player II
have to split an amount (a “pie”)
of one unit into x for player I and
y for player II, where

x ≥ 0, y ≥ 0, x + y ≤ 1 .

Then this defines in a simple way
a bargaining set S if u = x and
v = y.
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Split pie with utility functions

More generally, assume the pie is split into x and y so that

player I receives u(x), player II receives v(y),

where x ≥ 0, y ≥ 0, x + y ≤ 1. Here

player I has utility function u : [0, 1]→ [0, 1]

player II has utility function v : [0, 1]→ [0, 1]

with u(0) = 0, u(1) = 1, v(0) = 0, v(1) = 1,

and u and v increasing, continuous. and concave.
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Concave utility functions

A concave utility function u has “diminishing returns”. If u is differentiable this
means u′′ ≤ 0, in general

(1− p)u(x) + pu(x′) ≤ u((1− p)x + px′)

for all x, x′ and p ∈ [0, 1].

Example
u(x) =

√
x

u
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u x

u x’

(  )

(   )

30 / 52



Convex bargaining set

With concave u and v, the bargaining set S is convex,

S = {(u(x), v(y)) | x ≥ 0, y ≥ 0, x + y ≤ 1 }

Example
u(x) =

√
x

v(y) = y

u 

v
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Nash bargaining solution

Example u(x) =
√

x, v(y) = y

Pareto-frontier = {(u(x), v(1− x) | 0 ≤ x ≤ 1 }

The Nash bargaining solution maximizes

u(x)v(1− x) =
√

x(1− x) = x1/2 − x3/2 .

Derivative set to zero:

0 =
1
2

x−1/2 −
3
2

x1/2 =
1
2

x−1/2(1− 3x),

that is, x = 1/3 = share for player I, and player II gets y = 2/3.

Utilities (U,V) = (
√

1/3, 2/3) ≈ (0.577, 0.667).
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Toward noncooperative foundations: “The Rubinstein Bargaining Model”

A Rubinstein (1982). ‘Perfect Equilibrium in a Bargaining Model’.
Econometrica 50(1) : 97− 109.
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The ultimatum game
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Continuous version of the ultimatum game

0

I

1

. . .
A R

u(x)

v(1−x)

0

0

II

x

SPNE: player I makes player II indifferent between accepting and rejecting, here
with x = 1 , but player II nevertheless accepts.
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Bargaining
in two
rounds
δ = probability
that negotiations
continue,

0 < δ < 1.

Taking expected payoffs :

. . .
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Graphical solution for two rounds

SPNE : in last round, player II makes the ultimatum demand of y = 1, player I
accepts, player II gets δv(y) = δ, player I gets 0.

In previous (first) round, player I
makes player II indifferent be-
tween accepting and (A) rejecting
and making her counterdemand,
where she gets δ, by offering 1−x
so that (B) v(1− x) = δ , and
player II accepts in round 1, at
point B.
Payoffs are u(x), v(1− x).
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10 δ

δ
A B
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Bargaining
in three
rounds
x = demand by player I
in round 1

y = counter-demand by
player II in round 2

s = counter-counter-demand by
player I in last round 3
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Graphical solution for three rounds

1

u 

v

10 δ

δ

δ
2

δ
2

A

B C

A→ B : δ2u(1) = δu(1− y) (round 2, player II chooses y )

B→ C : δv(y) = v(1− x) (round 1, player I chooses x )
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Graphical solution for four rounds
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A→ B : δ3v(1) = δ2v(1− s) (round 3, player I chooses s )

B→ C : δ2u(s) = δu(1− y) (round 2, player II chooses y )

C→ D : δv(y) = v(1− x) (round 1, player I chooses x )
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Infinite
number of
rounds

look for
stationary
strategies
x and y
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Find stationary strategies graphically
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A=D

A→ B : δ2u(s) = δu(1− y) (round 2, player II chooses y )

B→ C : δv(y) = v(1− x) (round 1, player I chooses x )

C→ D : u(s) = u(x) ? yes! (⇔ s = u, stationarity)
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Characterization of stationary strategies

1

u 

v
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δ

δ
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δ
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A=D

In rounds 2, 4, 6,. . . : A→ B : player II demands y so that δ2u(x) = δu(1− y)⇔
δu(x) = u(1− y)

In rounds 1, 3, 5,. . . : B→ C : player I demands x so that δv(y) = v(1− x)
(two equations with two unknowns)
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The Nash bargaining solution via alternating offers

Theorem

As δ → 1, the payoffs u(x), v(y) for the stationary strategies x and y of alternating
offers with an infinite number of rounds tend to the Nash bargaining solution U,V
that maximizes UV for U = u(x), V = v(1− x).
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Graphical proof

αα
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v
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C = (u(x), v(1− x)),
F = (u(1− y), v(y)),
E = (u(x), v(y)),
G = (δu(x), δv(y)).

G→ C :
δv(y) = v(1− x) ,

G→ F :
δu(x) = u(1− y)

⇒ CEFG is a rectangle with di-
agonals FC and GE of equal slope
α.
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Bargaining evidence from laboratory experiments

AE Roth (1995). ‘Bargaining Experiments.’ In Handbook of Experimental
Economics, edited by John Kagel and Alvin E. Roth, 253-348. Princeton University
Press.

VL Smith (1962). ‘An Experimental Study of Competitive Market Behavior.’ Journal
of Political Economy 70(2): 111-137.
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Ultimatum Game Bargaining

recall last lecture

As in the Rubinstein bargaining model (with only one bargaining round)

1 the proposer (player 1) suggests a split between him and the receiver (player 2)
2 Player 2 can either accept or reject:

1 If he accepts, the shares proposed by player 1 realize
2 If he rejects, both players receive nothing.

Nash equilibria: any split supportable as a Nash equilibrium
Unique subgame-perfect Nash equilibrium prediction: (1 all, 2 nothing)
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Recap: features and evidence

Rejection by the responder kills own and other’s payoff
Any positive proposal, expecting acceptance, seems like a ‘gift’;
however, expecting (off the SPNE-path) rejection if one’s offer is too low, a
substantial proposal may be strategically rational
hence, for the responder, it may be rational to have a rejection reputation
Meta-analysis suggests

proposals of roughly 40%;
high rejection rates for proposals under 20%, intermediate rejection rates for
proposals of 20%-40%, and almost zero rejection rates for proposals >40%
rates vary with stakes, matching protocol, etc.
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Recap 1: acceptance rates

from Hollmann et al., PLoS ONE 2011
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Recap 2: offers

from Hoffman et al., IJGT 1996
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For one last time, let’s play a large single-item economy

1 Players: All of you.
2 Rules of the game: See instructions.
3 Two individuals (who end up trading with each other) will be paid their payoffs

in CHF.

https://scienceexperiment.online/vernon/vote or scan
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Thanks!

As always, please contact me under hnax@ethz.ch if you have questions.
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