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Lecture 3: Preferences and utility

Introduction

We talked in previous lectures about the difference between cooperative and
non-cooperative game theory.

We now focus on non-cooperative game theory where the sets of actions of
individual players are the primitives of the games.

We thus focus on strategic interactions between self-interested, independent
agents:

Chess: the game between two opponents

Cold war: the game between U.S.A. and Soviet Union

Rock-paper-scissors
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Lecture 3: Preferences and utility

The focus on a single player

To rigorously analyze such strategic interactions between separate agents
(e.g., individuals, firms, countries) we need to define

Preferences: what does each individual strive for in the interaction

If we can express these preferences through a real-valued function we gain
analytical tractability:

Utilities: a real-valued function expressing a player’s preferences
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Lecture 3: Preferences and utility

Preferences

Let x ∈ X be the set of decision alternatives for a player

Definition: binary relation

A binary relation � on a set X is a non-empty subset P ⊂ X × X. We
write x � y if and only if (x, y) ∈ P.

x � y: “the player weakly prefers x over y”

Define two associated binary relations:

x � y: “the player strictly prefers x over y”

x ∼ y: “the player is indifferent between x and y”
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Lecture 3: Preferences and utility

Examples

‘I prefer a 6 over a 5’ (6 � 5) and ‘I prefer a 4 over a fail’ (4 � fail)
6 � 4, 6 � fail, 5 � 4, 5 � fail
6 � 5 and 5 � fail⇒ 6 � fail
BMW� Toyota (because it is faster), Ford� BMW (because it is bigger),
Toyota � Ford (because it is safer)
BMW� Toyota� Ford BUT NOT BMW � Ford

Axiom 1: Completeness

∀x, y ∈ X : x � y or y � x or both

Axioms 2: Transitivity

∀x, y, z ∈ X : if x � y and y � z, then x � z
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Lecture 3: Preferences and utility

Worse and better alternatives

Axioms 1 and 2

Completeness. ∀x, y ∈ X : x � y or y � x or both
Transitivity. ∀x, y, z ∈ X : if x � y and y � z, then x � z

If a preference ordering satisfies completeness and transitivity it is called
rational.

Let � be a rational preference ordering on X. For x ∈ X define the subsets of
alternatives that are (weakly) worse/better than x :

W(x) = {y ∈ X : x � y}
B(x) = {y ∈ X : y � x}
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Lecture 3: Preferences and utility

Utility function

It is very convenient for the mathematical modeling of an agent with binary
relation � if we can find a real-valued function whose expected value the
agent aims to maximize.

Definition

A utility function for a binary relation � on a set X is a function u :
X → R such that

u(x) ≥ u(y) ⇐⇒ x � y

Proposition 1

There exists a utility function for every transitive and complete prefer-
ence ordering on any countable set.

Proof. Exercise.
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Lecture 3: Preferences and utility

Generalizing Proposition 1 to Borel sets
Let X be a Borel set in Rn (n ∈ N)

Axiom 3: Positive measurability

� is positive measurable if

∀x ∈ X the sets W(x) and B(x) are Borel sets

x ≺ y⇒ int{z ∈ X : x ≺ z � y} 6= ∅

Proposition 2

There exists a utility function for each complete, transitive, and posi-
tively measurable preference ordering on any Borel set.
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Lecture 3: Preferences and utility

Proposition 1/2 for continuous preferences

Let X ⊂ Rn (n ∈ N) be a closed set.

Axiom 4: Continuity

∀x ∈ X : B(x) and W(x) are closed sets.

Proposition 3

There exists a utility function for each complete, transitive, positively
measurable, and continuous preference ordering on any closed set.
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Lecture 3: Preferences and utility

Let’s play a game!

A fair coin is tossed until head shows for the first time:

If head turns up first at 1st toss you win 1 CHF

If head turns up first at 2nd toss you win 2 CHF

If head turns up first at 3rd toss you win 4 CHF

...

If head turns up first at kth toss you win 2k−1 CHF

You have a ticket for this lottery. For which price would you sell it?

https://scienceexperiment.online/gametheory/170306/vote

This game is called the St. Petersburg Paradox.
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Lecture 3: Preferences and utility

Utility 6= Payoff

If you only care about expected gain:

E[lottery] =
1
2
· 1 +

1
4
· 2 +

1
8
· 4 + ...

=
1
2

+
1
2

+
1
2

+ ...

= ∞

Bernoulli suggested in 1738 the theory of diminishing marginal utility of
wealth.

Further, the need for utility characterization under uncertainty arose.

This laid the foundation for expected utility theory.
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Lecture 3: Preferences and utility

Expected-utility theory

Let T = {τ1, ...τm} be a finite set and let X consist of all probability
distributions on T:

X = ∆(T) = {(x1, ...., xm) ∈ Rm
+ :

m∑
k=1

xk = 1}

That is X is the unit simplex in Rm.

Can we define a utility function in this setting?
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Lecture 3: Preferences and utility

Bernoulli function / von Neumann-Morgenstern utility
function

If � is a binary relation on X representing the agent’s preferences over
lotteries over T . If there is a function v : T → R such that

x � y ⇐⇒
m∑

k=1

xkv(τk) ≥
m∑

k=1

ykv(τk)

then

u(x) =

m∑
k=1

xkv(τk)

defines a utility function for � on X.

The assumption that preferences can be expressed in this form is called the
expected utility hypothesis. v is called a Bernoulli function.
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Lecture 3: Preferences and utility

Existence and independence of irrelevant alternatives

For the expected utility hypothesis to hold it is necessary that:

� is complete and transitive (Axioms 1 and 2)

� is continuous (note that X is closed and connected) (Axiom 4)

The representation is not only continuous but also linear we need further
axioms (respecting that the choice set only contains probability distributions):

Axiom 5: Independence of irrelevant alternatives

∀x, y, z ∈ X, ∀λ ∈ (0, 1):

x � y ⇒ (1− λ)x + λz � (1− λ)y + λz
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Lecture 3: Preferences and utility

A comment on independence of irrelevant alternatives

Axiom 5: Independence of irrelevant alternatives

∀x, y, z ∈ X, ∀λ ∈ (0, 1):

x � y ⇒ (1− λ)x + λz � (1− λ)y + λz

Suppose that x∗ = (1− λ)x + λz and y∗ = (1− λ)y + λz are compound
lottery.
Then if x � y an agent should also have the preference x∗ � y∗ independent of
what z is.

Example: Suppose an agent prefers Asian food over Italian but also values an
occasional Italian dish.

sushi � pizza ��⇒ (1−λ) · sushi+λ ·wontons � (1−λ) ·pizza+λ ·wontons
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Lecture 3: Preferences and utility

Allais paradox

The set of prices in CHF is X = {0; 1, 000, 000; 5, 000, 000}.

Which probability do you prefer:
p1 = (0.00; 1.00; 0.00) or p2 = (0.01; 0.089; 0.10)?

Which probability do you prefer:
p3 = (0.90; 0.00; 0.10) or p4 = (0.89; 0.11; 0.00)?

Most people report: p1 � p2 and p3 � p4.
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Lecture 3: Preferences and utility

Allais paradox
The set of prices in CHF is X = {0; 1, 000, 000; 5, 000, 000}.

p1 = (0.00; 1.00; 0.00) or p2 = (0.01; 0.089; 0.10)

p3 = (0.90; 0.00; 0.10) or p4 = (0.89; 0.11; 0.00)

Suppose (v0, v1M, v5M) is a Bernoulli function for �.

Then p1 � p2 implies:

v1M > .01 · v0 + .89 · v1M + .1 · v5M

.11 · v1M − .01 · v0 > .1 · v5M

now add .9 · v0 to both sides:

.11 · v1M + .89 · v0 > .1 · v5M + .9 · v0

But this implies p4 � p3, a contradiction!
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Lecture 3: Preferences and utility

Sure thing principle

Sure thing principle (Savage)

A decision maker who would take a certain action if he knew that event
B happens and also if he knew that not − B happens, should also take
the same action if he know nothing about B.

Lemma

Assume that everything the decision maker knows is true then sure thing
principle is equivalent to independence of irrelevant alternatives.
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Lecture 3: Preferences and utility

Sure thing principle: Savage (1954)

“A businessman contemplates buying a certain piece of property. He
considers the outcome of the next presidential election relevant. So, to clarify
the matter to himself, he asks whether he would buy if he knew that the
Democratic candidate were going to win, and decides that he would.
Similarly, he considers whether he would buy if he knew that the Republican
candidate were going to win, and again finds that he would. Seeing that he
would buy in either event, he decides that he should buy, even though he does
not know which event obtains, or will obtain, as we would ordinarily say. It is
all too seldom that a decision can be arrived at on the basis of this principle,
but except possibly for the assumption of simple ordering, I know of no other
extralogical principle governing decisions that finds such ready acceptance.”
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Lecture 3: Preferences and utility

Axioms

Axioms 1, 2, and 4

Completeness. ∀x, y ∈ X : x � y or y � x or both
Transitivity. ∀x, y, z ∈ X : if x � y and y � z, then x � z
Continuity. ∀x ∈ X : B(x) and W(x) are closed sets.

Axiom 5: Independence of irrelevant alternatives

∀x, y, z ∈ X, ∀λ ∈ (0, 1):

x � y ⇒ (1− λ)x + λz � (1− λ)y + λz
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Lecture 3: Preferences and utility

Von Neumann-Morgenstern

Theorem (von Neumann-Morgenstern)

Let � be a rational (complete & transitive) and continuous preference
relation on X = ∆(T), for any finite set T .
Then � admits a utility function u of the expected-utility form if and
only if � meets the axiom of independence of irrelevant alternatives.
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Lecture 3: Preferences and utility

Translation invariance

Given a Bernoulli function v for given preferences � let:

v′ = α+ βv

where α ∈ R and β ∈ R+.
Then v′ is also a Bernoulli function for another utility function

u′ = α+ βu

Expected utility functions are unique up to a positive affine transformation.
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Lecture 3: Preferences and utility

Ordinal, cardinal utility functions, and “utils”

Ordinal utility function. A utility function where differences between u(x)
and u(y) are meaningless. Only the fact that, for example, u(x) ≥ u(y) is
meaningful. An ordinal utility function can be subjected to any increasing
transformation f (u) which will represent the same preferences �.

Cardinal utility function. A utility function where differences between u(x)
and u(y) are meaningful as they reflect the intensity of preferences. Cardinal
utility functions are only invariant to positive affine transformations.

“Utils”. An even stronger statement would be that there is a fundamental
measure of utility, say one “util”. Such a utility function is not invariant to any
transformation.
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Lecture 3: Preferences and utility

Comparing utility: within person

1 “She likes x less than z”
2 “She likes x over z twice as much as y over z”
3 “She likes x five times more than y”

1. 2. 3.
Ordinal utility function yes no no
Cardinal utility function yes yes no
“Utils” yes yes yes
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Lecture 3: Preferences and utility

Comparing utility: interpersonal

Interpersonal comparability (IC). A utility function where utility
differences between players make “sense”.

Ordinal utility function possibly IC
Cardinal utility function possibly IC
“Utils” ⇒ IC

Suppose we have cardinal utility functions that are IC for agent 1 and 2,
u1, u2. Transform them by some non-affine increasing transformation f
resulting in v1 = f (u1), v2 = f (u2).
Then v1, v2 are no longer cardinal but are IC.

Note: Utility functions that are ordinal and do not allow for interpersonal
comparisons do not contain more information than preference relations.
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Lecture 3: Preferences and utility

Comparing utility: interpersonal

1 “Warren Buffet values 1000 CHF less than a starving child values 1000
CHF”

2 “Eve would pay 10 CHF (utils) for the chocolate, Sarah would pay 5
CHF (utils)”

3 “Mother loves d1 more than d2. Father loves d2 more than d1”

1. 2. 3.
Ordinal utility function yes (?) ? ?
Cardinal utility function yes (?) ? ?
“Utils” yes (?) yes (?) ?!?

Comparing utilities between agents implies some welfare statement /
judgment.
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Lecture 3: Preferences and utility

Utility and risk

Define a lottery:

x

1‐x

The lottery is a fair gamble if and only if x · v(τ1) = (1− x) · v(τ2).
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Lecture 3: Preferences and utility

Risk neutrality

Definition: risk neutral

An agent is risk-neutral if and only if he is indifferent between accept-
ing and rejecting all fair gambles, that is for all x, τ1, τ2:

E[u(lottery)] = x · v(τ1) + (1− x) · v(τ2)

= u(x · τ1 + (1− x) · τ2)

An agent is risk-neutral if and only if he has a linear von
Neumann-Morgenstern utility function.
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Lecture 3: Preferences and utility

Risk aversion

Definition: risk averse

An agent is risk averse if and only if he rejects all fair gambles, that is
for all x, τ1, τ2:

E[u(lottery)] = x · v(τ1) + (1− x) · v(τ2)

< u(x · τ1 + (1− x) · τ2)

Recall that a function g(·) is strictly concave if and only if

g(λx + (1− λ)y) > λg(x) + (1− λ)g(y)

An agent is risk averse if and only if he has a strictly concave utility function.
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Lecture 3: Preferences and utility

Risk seekingness

Definition: risk seeking

An agent is risk seeking if and only if he strictly prefers all fair gambles,
that is for all x, τ1, τ2:

E[u(lottery)] = x · v(τ1) + (1− x) · v(τ2)

> u(x · τ1 + (1− x) · τ2)

An agent is risk seeking if and only if he has a strictly convex utility function.
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Lecture 3: Preferences and utility

1,0

0,1

0

1

, 1
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Lecture 3: Preferences and utility

Some final remarks

If you believe that people have preferences, under reasonable axioms we
can translate them into utility functions.

Money is not equal to utility (recall diminishing marginal utility).

Preferences do not have to be self-regarding (“homo oeconomicus”).
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Lecture 3: Non-cooperative game theory: Normal form

Plan

Introduction normal form games

Dominance in pure strategies

Nash equilibrium in pure strategies

Best replies

Dominance, Nash, best replies in mixed strategies

Nash’s theorem and proof via Brouwer

Equilibrium refinements
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Lecture 3: Non-cooperative game theory: Normal form

The Prisoner’s Dilemma

"Two suspects are arrested and interviewed separately. If they both keep quiet
(i.e., cooperate) they go to prison for one year. If one suspect supplies
evidence (defects) then that one is freed, and the other one is imprisoned for
eight years. If both defect then they are imprisoned for five years."

PLAYERS The players are the two suspects N = {1, 2}.
STRATEGIES The strategy set for player 1 us S1 = {C,D}, and for

player 2 is S2 = {C,D}.
PAYOFFS For example, u1(C,D) = −8 and u2(C,D) = 0. All

payoffs are represented in this matrix:

Cooperate Defect
Cooperate −1,−1 −8, 0

Defect 0,−8 −5,−5

34 / 54



Lecture 3: Non-cooperative game theory: Normal form

Definition: Normal form game

A normal form (or strategic form) game consists of three object:
1 Players: N = {1, . . . , n}, with typical player i ∈ N.
2 Strategies: For every player i, a finite set of strategies, Si, with

typical strategy si ∈ Si.
3 Payoffs: A function ui : (s1, . . . , sn)→ R mapping strategy

profiles to a payoff for each player i. u : S→ Rn.

Thus a normal form game is represented by the triplet:

G = 〈N, {Si}i∈N , {ui}i∈N〉
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Lecture 3: Non-cooperative game theory: Normal form

Strategies

Definition: strategy profile

s = (s1, . . . , sn) is called a strategy profile.
It is a collection of strategies, one for each player. If s is played, player
i receives ui(s).

Definition: opponents strategies

Write s−i for all strategies except for the one of player i. So a strategy
profile may be written as s = (si, s−i).
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Lecture 3: Non-cooperative game theory: Normal form

Dominance

A strategy strictly dominates another if it is always better whatever others do.
STRICT DOMINANCE A strategy si strictly dominates s′i if

ui(si, s−i) > ui(s′i, s−i) for all s−i.
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Lecture 3: Non-cooperative game theory: Normal form

Dominance

A strategy strictly dominates another if it is always better whatever others do.

STRICT DOMINANCE A strategy si strictly dominates s′i if
ui(si, s−i) > ui(s′i, s−i) for all s−i.

DOMINATED STRATEGY A strategy s′i is strictly dominated if there is an si

that strictly dominates it.

DOMINANT STRATEGY A strategy si is strictly dominant if it strictly
dominates all s′i 6= si.

If players are rational they should never play a strictly dominated strategy, no
matter what others are doing, they may play weakly dominated strategies:

WEAK DOMINANCE A strategy si weakly dominates s′i if
ui(si, s−i) ≥ ui(s′i, s−i) for all s−i.
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Lecture 3: Non-cooperative game theory: Normal form

Dominant-Strategy Equilibrium

Definition: Dominant-Strategy Equilibrium

The strategy profile s∗ is a dominant-strategy equilibrium if, for every
player i, ui(s∗i , s−i) ≥ ui(si, s−i) for all strategy profiles s = (si, s−i).

Example: Prisoner’s dilemma

Cooperate Defect
Cooperate −1,−1 −8, 0

Defect 0,−8 −5,−5

(D,D) is the (unique) dominant-strategy equilibrium.
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Lecture 3: Non-cooperative game theory: Normal form

Common knowledge of rationality and the game

Suppose that players are rational decision makers and that mutual rationality
is common knowledge, that is:

I know that she knows that I will play rational

She knows that “I know that she knows that I will play rational”

I know that “She knows that “I know that she knows that I will play
rational””

...

Further suppose that all players know the game and that again is common
knowledge.
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Lecture 3: Non-cooperative game theory: Normal form

Iterative deletion of strictly dominated strategies

If the game and rationality of players are common knowledge, iterative
deletion of strictly dominated strategies yields the set of “rational” outcomes.

Note: Iteratively deletion of strictly dominated strategies is independent of the
order of deletion.
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Lecture 3: Non-cooperative game theory: Normal form

Battle of the Sexes

PLAYERS The players are the two students N = {row, column}.
STRATEGIES Row chooses from Srow = {Cafe,Pub}

Column chooses from Scolumn = {Cafe,Pub}.
PAYOFFS For example, urow(Cafe,Cafe) = 4. The following

matrix summarises:

Cafe Pub
Cafe 4, 3 1, 1
Pub 0, 0 3, 4
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Lecture 3: Non-cooperative game theory: Normal form

Battle of the Sexes

In this game, nothing is dominated, so profiles like (Cafe, Pub) are not
eliminated. Should they be?

Column player would play Cafe if row player played Cafe!

Row player would play Pub if column player played Pub!

In other words, after the game, both players may "regret" having played their
strategies.

This a truly interactive game – best responses depend on what other players
do ... next slides!
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Lecture 3: Non-cooperative game theory: Normal form

Nash Equilibrium

Definition: Nash Equilibrium

A Nash equilibrium is a strategy profiles s∗ such that for every player i,

ui(s∗i , s
∗
−i) ≥ ui(si, s∗−i) for all si

At s∗, no i regrets playing s∗i . Given all the other players’ actions, i
could not have done better

In words: If no player has an incentive to deviate from their part in a
particular strategy profile, then it is Nash equilibrium.
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Lecture 3: Non-cooperative game theory: Normal form

Best-Reply functions

What should each player do given the choices of their opponents? They
should "best reply".

Definition: best-reply function

The best-reply function for player i is a function Bi such that:

Bi(s−i) = {si|ui(si, s−i) ≥ ui(s′i, s−i) for all s′i}

45 / 54



Lecture 3: Non-cooperative game theory: Normal form

Best-reply functions in Nash

Nash equilibrium can be redefined using best-reply functions:

Definition: Nash equilibrium

s∗ is a Nash equilibrium if and only if s∗i ∈ Bi(s∗−i) for all i.

In words: a Nash equilibrium is a strategy profile of mutual best responses
each player picks a best response to the combination of strategies the other
players pick.
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Lecture 3: Non-cooperative game theory: Normal form

Example
For the Battle of the Sexes:

Brow(Cafe) = Cafe

Brow(Pub) = Pub

Bcolumn(Cafe) = Cafe

Bcolumn(Pub) = Pub

So (Cafe, Cafe) is a Nash equilibrium and so is (Pub, Pub) . . .
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Lecture 3: Non-cooperative game theory: Normal form

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best
replies for each player:

L C R
T 5, 1 2, 0 2, 2
M 0, 4 1, 5 4, 5
B 2, 4 3, 6 1, 0
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Lecture 3: Non-cooperative game theory: Normal form

Matching Pennies

"Each player has a penny. They simultaneously choose whether to put their
pennies down heads up (H) or tails up (T). If the pennies match, column
receives row’s penny, if they don’t match, row receives columns’ penny."

PLAYERS The players are N = {row, column}.
STRATEGIES Row chooses from {H,T}; Column from {H,T}.

PAYOFFS Represented in the strategic-form matrix:

H T
H 1,−1 −1, 1
T −1, 1 1,−1

Best replies are: Brow(H) = H,Brow(T) = T,Bcolumn(T) = H, and
Bcolumn(H) = T

There is no pure-strategy Nash equilibrium in this game
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Lecture 3: Non-cooperative game theory: Normal form

Plan

Introduction normal form games

Dominance in pure strategies

Nash equilibrium in pure strategies

Best replies

Dominance, Nash, best replies in mixed strategies

Nash’s theorem and proof via Brouwer

Equilibrium refinements
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Lecture 3: Non-cooperative game theory: Normal form

Hawk-dove game

Player 2
Hawk Dove

Player 1
Hawk -2,-2 4,0
Dove 0,4 2,2
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Lecture 3: Non-cooperative game theory: Normal form

Harmony game

Company B
Cooperate Not Cooperate

Company A
Cooperate 9,9 4,7

Not Cooperate 7,4 3,3
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Lecture 3: Non-cooperative game theory: Normal form

A three player game

L R

l r
T 0, 21, 0 −10, 11, 1
B 10, 0,−10 0, 10, 11

l l
T 1, 11, 10 11, 1,−9
B −9, 10, 0 1, 20, 1

53 / 54



Lecture 3: Non-cooperative game theory: Normal form

THANKS EVERYBODY
See you next week!
and keep checking the website for new materials as we progress:
http://www.coss.ethz.ch/education/GT.html
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